Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521333

RESUMO

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Assuntos
Antibacterianos , Glucanos , Goma Arábica , Nanofibras , Nanofibras/química , Glucanos/química , Glucanos/farmacologia , Goma Arábica/química , Antibacterianos/farmacologia , Antibacterianos/química , Salvia/química , Lactobacillus delbrueckii , Probióticos/química , Animais , Conservação de Alimentos/métodos , Carne Vermelha/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Mucilagem Vegetal/química , Escherichia coli/efeitos dos fármacos , Bovinos , Embalagem de Alimentos/métodos
2.
Int J Biol Macromol ; 266(Pt 1): 131173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554904

RESUMO

Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.


Assuntos
Antioxidantes , Cinnamomum zeylanicum , Filmes Comestíveis , Emulsões , Óleos Voláteis , Mucilagem Vegetal , Sementes , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Mucilagem Vegetal/química , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos
3.
Int J Biol Macromol ; 263(Pt 2): 129787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296145

RESUMO

Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.


Assuntos
Mucilagem Vegetal , Salvia , Mucilagem Vegetal/química , Sementes/química , Salvia/química , Polissacarídeos/química , Ferro/análise , Água/análise
4.
Food Chem ; 438: 138011, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37984000

RESUMO

Biocomposite films were prepared by formulating talipot starch with plant mucilage derived from shoeblack leaves, okra, and seeds of basil, fenugreek, and flax, which were identified as SBM-TSF, OKM-TSF, BSM-TSF, FGM-TSF, and FXM-TSF, respectively. The plant mucilages enhanced the crosslinking of the filmogenic solutions, which increased the film's relative crystallinity. Upon topographical investigation, the biocomposite films exhibited the same compact and homogeneous structures as the native talipot starch film (NTSF), but with finer corrugations. When compared to NTSF, the addition of plant mucilage decreased the moisture content while increasing the thickness and opacity. SBM-TSF showed significantly reduced (p ≤ 0.05) solubility and water vapor permeability, indicating that increased crosslink formation in the film obstructed the water vapor passage. Among all the biocomposite films, the BSM-TSF had the greatest tensile strength, making it more resistant to stretching. Among the studied biocomposite films, SBM-TSF and BSM-TSF demonstrated improved thermal and biodegradation stability.


Assuntos
Mucilagem Vegetal , Amido , Amido/química , Mucilagem Vegetal/química , Vapor , Solubilidade , Permeabilidade , Resistência à Tração
5.
Food Funct ; 14(3): 1401-1414, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637177

RESUMO

Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both ß-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.


Assuntos
Mucilagem Vegetal , Salvia , Salvia hispanica , Fermentação , Salvia/química , Polissacarídeos/química , Sementes/química , Oligossacarídeos/análise , Fibras na Dieta/análise , Mucilagem Vegetal/química
6.
Int J Biol Macromol ; 230: 123146, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610576

RESUMO

Current trends are shifting away from using synthetic compounds in favor of discovering new natural component sources that will allow them to create goods that are healthful, environmentally friendly, sustainable, and profitable. The food industry, in light of these trends, has opted to look for safe natural ingredients that will allow the production of low-fat, artificial-additive-free, gluten-free, prebiotic, and fortified foods. Similarly, the pharmaceutical and medical industries have attempted to apply natural ingredients to address the challenges related to biomaterials more efficiently than synthetic ingredients. Against this background, plant mucilage has proven to be a polysaccharide with excellent health features and technological properties, useful for both food and biomedical applications. Many studies have shown that its inclusion in different food matrices improves the quality of the products obtained under appropriate reformulations. At the same time, plant mucilage has been indicated to be a very interesting matrix in biomedical field especially tissue engineering applications since it has been emerged to favor tissue regeneration with its highly biocompatible structure. This concise review discusses the most recent advances of the applications of plant mucilage in different foods as well as its recent use in biomedical field. In this context, firstly, a general definition of mucilage was made and information about plant-based mucilage, which is frequently used, about the plant parts they are found in, their content and how they are obtained are presented. Then, the use of mucilage in the food industry including bakery products, meat emulsions, fermented dairy products, ice cream, and other foods is presented with case studies. Afterwards, the use of plant mucilage in the biomedical field, which has attracted attention in recent years, especially in applications with tissue engineering approach such as scaffolds for tissue regeneration, wound dressings, drug delivery systems and pharmaceutical industry was evaluated.


Assuntos
Mucilagem Vegetal , Mucilagem Vegetal/química , Polissacarídeos/farmacologia , Plantas , Indústria Alimentícia , Laticínios
7.
Int J Biol Macromol ; 224: 1588-1599, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346259

RESUMO

In this study, maltodextrin (MDex), lutein pigment (Lut) and alumina (Al) were used to modify biodegradable film based on cress seed mucilage (Muc/MDex/Lut/Al). Central composite design (CCD) was used to study the effects of MDex, Lut and Al on the physical and chemical properties of the mucilage based film. The physicochemical, mechanical, antimicrobial and structural properties of the films were studied by various techniques such as FTIR, SEM, and XRD and TGA. The release of lutein from the film was investigated at 25 °C for 15 days. The results showed that lutein, alumina and maltodextrin increased the film thickness and lutein decreased the solubility and moisture content of the film. Maltodextrin improved the mechanical properties of the film and lutein reduced the film's flexibility. Lutein greatly increased its antioxidant properties, but alumina slightly increased its antioxidant properties. Lutein, alumina and maltodextrin improved the antibacterial properties of the film. Muc/MDex/Lut/Al film showed 26 ± 0.5 and 23 ± 0.8 mm non-growth halo against to Staphylococcus aureus and Escherichia coli, respectively. Maltodextrin filled the surface cracks, but lutein increased the surface cracks of mucilage film. The amorphous structure of the pure cress seed mucilage film was confirmed by XRD, which the alumina and lutein gave crystalline properties in the film. Maltodextrin and alumina increased the thermal stability of the film. The release results showed that the release rate of lutein depends on the structure of the film and by changing the structure of the film, the release rate can be purposefully controlled according to the required release rate.


Assuntos
Brassicaceae , Nanopartículas , Mucilagem Vegetal , Luteína/química , Antioxidantes/química , Mucilagem Vegetal/química , Preparações de Ação Retardada , Sementes/química , Nanopartículas/química
8.
J Sci Food Agric ; 103(8): 3860-3870, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36308762

RESUMO

BACKGROUND: The application of chia mucilage still remains restricted due to the difficulty in achieving high extraction yields. The effect of ultrasonic-assisted extraction (UAE) conditions (temperature, seed:water ratio and time) on the rheological properties of chia mucilage extracts and the relation to the proportion of translucent phase (TP) and opaque phase (OP) of the mucilage in the extract were evaluated. RESULTS: UAE allowed the efficient extraction of chia mucilage from chia seeds. The desired overall optimal combination to maximize both yield and apparent viscosity was achieved at a seed:water ratio 1:10, a temperature of 25.3 °C and 53.7 min extraction time; the optimal conditions to obtain the maximum yield and minimum apparent viscosity were a seed:water ratio close to 1:20, temperature of 48.8 °C and 208.4 min extraction time. CONCLUSION: The results obtained in the present work demonstrated that the differences in rheological properties of chia mucilage extracts are due to the extraction methods used. Therefore, it is possible to modulate the extraction conditions in order to obtain different characteristics of the mucilage, maintaining a high extraction yield. © 2022 Society of Chemical Industry.


Assuntos
Mucilagem Vegetal , Salvia , Mucilagem Vegetal/química , Viscosidade , Ultrassom , Salvia/química , Polissacarídeos/química , Sementes/química , Extratos Vegetais/química , Água/análise
9.
Sci Rep ; 12(1): 17116, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224240

RESUMO

The valorization of new polymer sources from underutilized plants as structuring, encapsulating, and texturizing agents for food and nutraceutical applications is gaining attention. This provides an opportunity where inexpensive plant-sourced biopolymers can play an impactful role, on both ecological and economic aspects performing equivalently effectual yet cost-effective substitutes to synthetic polymers. With this aim, we explored the use of mucilage from Althea rosea and reveal its physicochemical, in vitro antidiabetic and antihypertensive activity. Besides, structural, micrometric, crystallization, and anti-microbial properties was also seen. We determined the probable structure of the extracted mucilage by FTIR which confirmed the residues of saccharides as galactose and uronic acid with α and ß configurations. It consists of 78.26% carbohydrates, 3.51% ashes, and 3.72% proteins. Here, we show that the mucilage offered protection to DNA against the oxidative damage caused by (-OH) radicals and the morphology of the mucilage particles displayed a fibrillary material settled in a net-like, tangled structure. Our results demonstrate that the reconstituted mucilage powder exhibited good water holding capacity (2.89 g water/g mucilage), solubility (27.33%), and oil holding capacity (1.79 g oil/g mucilage). Moreover, high emulsifying property (95.83%) and foaming capacity (17.04%) was noted. Our results indicate that A.rosea mucilage can potentially serve as economical and eco-friendly hydrocolloid substitute for the food and nutraceutical industry owing to its functional, hypo-lipidemic, anti-hyperglycemic, antioxidant, and anti-bacterial properties.


Assuntos
Mucilagem Vegetal , Anti-Hipertensivos/farmacologia , Antioxidantes/farmacologia , Coloides/química , Galactose , Hipoglicemiantes/farmacologia , Mucilagem Vegetal/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Pós , Ácidos Urônicos , Água/química
10.
J Sci Food Agric ; 102(13): 5585-5592, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35396743

RESUMO

Chia mucilage (CM) is an emerging resource in food applications. However, the mechanism of this biopolymer as a stabilizer/emulsifier ingredient has not yet been well defined. A non-uniform viscoelastic tridimensional network was observed on emulsions with CM, while the surface activity of the CM ingredient has been associated with its protein content. To understand its functionality in food, this review focused on discussing and summarizing the rheological properties of dispersions and emulsions composed of CM under different conditions, such as pH, temperature, salt content, and mucilage content. For example, emulsions and dispersions with CM showed pseudoplastic behavior. An increase in the CM concentration increased the viscosity and the consistency index and decreased the behavior index. The consistency index of dispersions with CM increased with pH. The future evaluation of emulsions and dispersions properties, such as viscoelastic properties and microstructure, is particularly important for the successful use of CM in the food industry. The principal studies have evaluated the use of CM in dairy and meat systems as an emulsifier, stabilizer, or lipid replacer. The nutritional quality of the products with CM was maintained or improved, but sometimes an undesirable darkening was observed. Future evaluation of the cold extraction method of CM might improve the color and overall sensory acceptability of food products with CM. Integrated chia seed processing, including mucilage, oil, and protein extraction could be carried out to make chia seed industrial processing viable. © 2022 Society of Chemical Industry.


Assuntos
Mucilagem Vegetal , Salvia , Emulsificantes , Emulsões/química , Mucilagem Vegetal/química , Polissacarídeos/química , Reologia , Salvia/química
11.
Molecules ; 26(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885655

RESUMO

Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Antivirais/química , Agentes de Imunomodulação/química , Oligossacarídeos/química , Compostos Fitoquímicos/química , Mucilagem Vegetal/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Indústria Alimentícia/métodos , Humanos , Relação Estrutura-Atividade
12.
Nanotechnology ; 33(7)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34727534

RESUMO

This study investigates the potential of iron oxide nanoparticles (Fe3O4) and quince seed mucilage as combined genetic carriers to deliver plasmid DNA (pDNA) through the gastrointestinal system. The samples are characterized by x-ray diffraction (XRD), zeta potential, dynamic light scattering, FT-IR spectroscopy, field emission scanning electron microscopy and vibrating sample magnetometry. The stability of pDNA loading on the nanocarriers and their release pattern are evaluated in simulated gastrointestinal environments by electrophoresis. The XRD patterns reveal that the nanocarriers could preserve their structure during various synthesis levels. The saturation magnetization (Ms) of the Fe3O4cores are 56.48 emu g-1without any magnetic hysteresis. Not only does the loaded pDNA contents experience a remarkable stability in the simulated gastric environment, but also, they could be released up to 99% when exposed to an alkaline environment similar to the intestinal fluid of fish. The results indicate that the synthesized nanoparticles could be employed as efficient low-cost pDNA carriers.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas de Magnetita/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Mucilagem Vegetal/química , Plasmídeos , DNA/química , DNA/farmacocinética , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/farmacocinética , Rosaceae/química , Sementes/química
13.
Pak J Pharm Sci ; 34(4(Supplementary)): 1541-1547, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799330

RESUMO

To evaluate in-vivo antioxidant potential of fruit mucilage from Cucumis melo variety momordica (PM) and variety agrestis (KM) using rats as experimental animals, the fruits were collected, identified, dried and pulverized. Mucilages were isolated from the fruit powders by microwave-assisted method. Aqueous extracts obtained were filtered to remove fruit pulp. Each filtrate was centrifuged at 4000xg rpm for 15 min. Each supernatant was precipitated with 3 volumes of 95% ethanol and maintained overnight at 4°C. These precipitates were filtered and lyophilized. In vivo antioxidant activity was determined using rats for 14 days. Paracetamol (75mg/Kg, i.p.) for inducing oxidative stress and Vitamin C & Vitamin E (200mg/Kg each, p.o.) as standard treatment were used. PM and KM were given in 500mg/Kg and 1000mg/Kg, p.o. doses in separate groups. SOD, MDA, GSH and CAT levels were estimated in organs (liver, kidney, heart, brain) of all groups using standard procedures. Toxic control showed prominent toxicity in the liver. The levels of GSH, CAT and SOD were raised and MDA levels were reduced in all organs of test and standard groups. The levels of antioxidant biomarkers varied in all remaining groups. The overall results are significant suggesting strong antioxidant potential of PM and KM.


Assuntos
Antioxidantes/farmacologia , Cucumis melo/classificação , Cucumis melo/fisiologia , Frutas/química , Estresse Oxidativo/efeitos dos fármacos , Mucilagem Vegetal/farmacologia , Animais , Antioxidantes/química , Feminino , Masculino , Mucilagem Vegetal/química , Mucilagem Vegetal/toxicidade , Ratos , Ratos Wistar
14.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770781

RESUMO

The anticancer activity of natural compounds has recently attracted multidisciplinary research. In this study, the complexation of milk proteins (MP) with Isabgol husk mucilage (IHM) and Ziziphus spina-christi mucilage (NabM) was investigated. In this context, the physicochemical properties of milk protein mucilage complexes (MPMC) including pH, Carr's index, water solubility, and water absorption indices were measured, and the flow behavior was studied. In addition, the amino acid profile, protein digestibility, and phenolic and flavonoids content of MPMC were explored, and the microstructure of the complexes was visualized using transmission electron microscopy. The antioxidant and anticancer potencies of MPMC against two cancerous cell lines, human liver cancer HEPG-2 and breast cancer MCF-7, in comparison with two normal cell lines, namely, Bj-1 and MCF-12F, were tested using neutral red uptake assay. The results revealed that MPMC had scavenging activity against DPPH, ABTS, and HS radicals. Moreover, MPMC has the potential to prevent DNA damage induced by oxidative stress in Type-Fenton's reaction. The results of the neutral red assay showed significant growth inhibition of both HEPG-2, MCF-7, whereas no significant cytotoxic effect was detected against Bj-1 and MCF-12F. RT-qPCR results indicated MPMC stimulated apoptosis as revealed by the upregulation of the pro-apoptosis gene markers Casepase-3, p53, Bax. Meanwhile, the anti-apoptosis Bcl-2 gene was downregulated. However, no significant difference was observed in normal cell lines treated with MPMC. In conclusion, MPMC can be considered as a promising anticancer entity that can be used in the development of novel cancer therapeutics with comparable activity and minimal side effects compared to conventional cancer chemotherapies.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Proteínas do Leite/química , Mucilagem Vegetal/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Dano ao DNA/efeitos dos fármacos , Flavonoides , Humanos , Concentração Inibidora 50 , Nanopartículas/química , Nanopartículas/ultraestrutura , Fenóis , Análise Espectral
15.
Nanotechnology ; 33(7)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34757957

RESUMO

Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.


Assuntos
Técnicas Eletroquímicas/métodos , Lamiaceae/química , Mucilagem Vegetal/química , Álcool de Polivinil/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/toxicidade , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Teste de Materiais , Nanofibras/química , Nanofibras/toxicidade , Sementes/química , Células Vero
16.
Int J Biol Macromol ; 192: 1098-1107, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666132

RESUMO

Plant-based hydrogels have attracted great attention in biomedical fields since they are biocompatible and based on natural, sustainable, cost-effective, and widely accessible sources. Here, we introduced new viscoelastic bio-inks composed of quince seed mucilage and cellulose nanofibrils (QSM/CNF) easily extruded into 3D lattice structures through direct ink writing in ambient conditions. The QSM/CNF inks enabled precise control on printing fidelity where CNF endowed objects with shape stability after freeze-drying and with suitable porosity, water uptake capacity, and mechanical strength. The compressive and elastic moduli of samples produced at the highest CNF content were both increased by ~100% (from 5.1 ± 0.2 kPa and 32 ± 1 kPa to 10.7 ± 0.5 and 64 ± 2 kPa, respectively). These values ideally matched those reported for soft tissues; accordingly, the cell compatibility of the printed samples was evaluated against HepG2 cells (human liver cancer). The results confirmed the 3D hydrogels as being non-cytotoxic and suitable to support attachment, survival, and proliferation of the cells. All in all, the newly developed inks allowed sustainable 3D bio-hydrogels fitting the requirements as scaffolds for soft tissue engineering.


Assuntos
Celulose/química , Hidrogéis/química , Nanofibras/química , Mucilagem Vegetal/química , Impressão Tridimensional , Rosaceae/química , Linhagem Celular Tumoral , Fenômenos Químicos , Humanos , Nanofibras/ultraestrutura , Porosidade , Reologia , Análise Espectral , Alicerces Teciduais
17.
Int J Biol Macromol ; 190: 618-623, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509518

RESUMO

This study aimed to investigate the effect of chia seed mucilage (CSM) - bacterial cellulose nano-fiber (CNF) edible coating on bioactive compounds and antioxidant enzyme activity of strawberries. Strawberries were coated with CSM containing 0.6 and 8.0% (w/w) of CNF. The content of total phenol, flavonoids, anthocyanin, ascorbic acid, protein content, antioxidant activity and the activity of polyphenol oxidase, peroxidase, superoxide dismutase and phenylalanine ammonia-lyase enzymes were evaluated. The use of CSM - CNF edible coatings further preserved the phenolic, flavonoid, ascorbic acid and antioxidant activity of strawberries, and this effect was more evident in the CSM-coated sample containing CNF; However, the accumulation of anthocyanins in the coated samples was lower than the control sample. The activity of polyphenol oxidase and peroxidase enzymes, which lead to the degradation of phenolic compounds and brown color in the product, was also effectively controlled by the edible coating.


Assuntos
Antioxidantes/análise , Celulose/química , Filmes Comestíveis , Conservação de Alimentos , Fragaria/química , Mucilagem Vegetal/química , Salvia hispanica/química , Sementes/química , Antocianinas/análise , Ácido Ascórbico/análise , Catecol Oxidase/metabolismo , Temperatura Baixa , Flavonoides/análise , Gluconacetobacter/química , Peroxidase/metabolismo , Fenóis/análise , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/análise
18.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572119

RESUMO

The ability to extrude mucilage upon seed imbibition (myxospermy) occurs in several Angiosperm taxonomic groups, but its ancestral nature or evolutionary convergence origin remains misunderstood. We investigated seed mucilage evolution in the Brassicaceae family with comparison to the knowledge accumulated in Arabidopsis thaliana. The myxospermy occurrence was evaluated in 27 Brassicaceae species. Phenotyping included mucilage secretory cell morphology and topochemistry to highlight subtle myxospermy traits. In parallel, computational biology was driven on the one hundred genes constituting the so-called A. thaliana mucilage secretory cell toolbox to confront their sequence conservation to the observed phenotypes. Mucilage secretory cells show high morphology diversity; the three studied Arabidopsis species had a specific extrusion modality compared to the other studied Brassicaceae species. Orthologous genes from the A. thaliana mucilage secretory cell toolbox were mostly found in all studied species without correlation with the occurrence of myxospermy or even more sub-cellular traits. Seed mucilage may be an ancestral feature of the Brassicaceae family. It consists of highly diverse subtle traits, probably underlined by several genes not yet characterized in A. thaliana or by species-specific genes. Therefore, A. thaliana is probably not a sufficient reference for future myxospermy evo-devo studies.


Assuntos
Arabidopsis/química , Evolução Biológica , Brassicaceae/química , Mucilagem Vegetal/química , Proteínas de Plantas/metabolismo , Sementes/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Parede Celular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Transcriptoma
19.
Int J Biol Macromol ; 191: 861-871, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34571126

RESUMO

Compressed tablet formation from granular drug require binder with Cohesiveness property. Plants mucilage as pharmaceutical excipients are available. In this study, biocompatible date palm mucilage was encapsulated with silver nano particles for sustained drug release to provoke an immune response. Nano formulated mucilage was characterized by UV/VIS, FTIR, XRD, SEM/EDX spectrophotometry. UV/VIS spectra revealed an intense surface plasmon resonance peak at 406 nm for spherical mono dispersed silver nano formulated mucilage resulted from efficient reduction of silver ions to AgNPs. Zeta sizer disclosed the emergence of single peak at 139.7 nm with 100% intensity. Crude mucilage exhibited number of peaks in the region of 4000-500 cm-1 by FT-IR spectroscopy whereas purified as well as nano formulated samples showed somewhat different pattern of peaks in addition to peaks of crude sample. XRD spectra of crude mucilage revealed somewhat regular pattern while purified and modified mucilage displayed irregular structure. In SEM analysis, crude mucilage was appeared as granular that turned into porous network with entangled tiny silver nano spheres. A controlled release of drug levofloxacin hemihydrate was evaluated using crude/ nano formulated mucilage as excipient. Nano formulated mucilage delayed the onset exposure of drug in gastric medium giving recommendations as value added bio binder for drug to the target organ.


Assuntos
Liberação Controlada de Fármacos , Nanopartículas/química , Mucilagem Vegetal/química , Antibacterianos/administração & dosagem , Células Cultivadas , Colo/metabolismo , Humanos , Levofloxacino/administração & dosagem , Phoeniceae/química
20.
Biomed Res Int ; 2021: 5058372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373833

RESUMO

BACKGROUND: There are various natural excipients which have been used as suspending agents in pharmaceutical suspensions due to the presence of mucilage in their specialized cells and their capacity to form a colloidal gel in an aqueous medium. OBJECTIVE: The purpose of this study was to evaluate the suspending capacity of Aloe elegans mucilage in suspension formulations. MATERIALS AND METHODS: Aloe elegans mucilage (AEM) was evaluated as a suspending agent in comparison with xanthan gum (XG) in paracetamol suspensions at 1, 2, 3, 4, and 5% (w/v) concentrations. The resulting suspensions were evaluated for their sedimentation volume, apparent viscosity, flow rate, rate of redispersibility, pH, assay, and dissolution profile. RESULTS: The volume of sedimentation, apparent viscosity, and redispersibility rate of the formulations were significantly increased (p < 0.05), with the concentration of the suspending agents. Meanwhile, the apparent viscosity for all formulations has significantly decreased (p < 0.05) with an increase in shear rates. Volume of sedimentation, apparent viscosity, and redispersibility degree of the formulations prepared with AEM were significantly (p < 0.05) lower than XG-containing formulations at the same concentration. Nevertheless, the sedimentation volume of all formulations with AEM was significantly (p < 0.05) higher than the suspension without any suspending agent. With regard to drug content and pH values, all formulations showed an acceptable result with the standards. All formulations showed a release of greater than 85% of drug content within 45 min. CONCLUSION: Aloe elegans mucilage could have a potential to be utilized as an alternative suspending agent in pharmaceutical suspensions.


Assuntos
Acetaminofen/síntese química , Aloe/química , Mucilagem Vegetal/química , Polissacarídeos Bacterianos/química , Acetaminofen/química , Composição de Medicamentos , Concentração de Íons de Hidrogênio , Reologia , Suspensões , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA